Gold (A-Day) is Periods 1, 5 and Period 7 and B-Day I am not on campus | Date | What you should learn today | Class Activities | Handouts | Coursework (due next block) | |---------------|---|---|--|---| | A: 10/12 (M) | Unit 1 Alchemy Exam #1 Make-up Test is Th, 10/15 in testing center. | Turn in packets Take the exam | Unit 1 Alchemy Exam | None Last day to turn in CuCycle lab
Summary for a grade is
10/14/15 | | A: 10/14 (W) | How are the smallest bits of matter described? Describe the historical development of atomic theory Describe and draw an atomic model & explain evidence that supports it Describe the dynamic (changing) nature of scientific models | Atomic Theory Timeline Puzzle Lesson 11 Atomic Pudding Notes on Atomic Models | Unit 2 Calendar L11 Atomic Pudding handout | Read pp. 53-56 DO: Ex. p. 57(#1-7 & 9) | | A: 10/16 (F) | How are the atoms of one element different from those of another element? Define atomic number, mass of an atom and average atomic mass Describe the structure of an atom and draw a simple atomic model Use the periodic table to get data related to atomic structure and atomic mass | Lesson 12 Atoms by the
Numbers Notes/Discussion | L12 Atoms by the numbers | Read pp. 58-61 DO ex. p. 62 (#1-8) | | A: 10/20 (T) | Build an atom with ipads | Return Unit 1 Exam #1PhET Build an Atom | Build an Atom DUE End of Period | Review for Atoms Quiz | | A: 10/22 (Th) | How can atoms of the same element be different? Relate isotope atomic number and mass number to fundamental subatomic particles. Write chemical symbols and naming isotopes. | Quiz Atoms (start of class) PhET simulation Isotopes (Library Macs last 45 min.) | PhET Simulation Exploring Isotopes DUE End of Period | Read pp. 63-65DO ex. p. 66 (#1-4) | | A: 10/26 (M) | How can atoms of the same element be different? Define isotope & interpret the symbol for a specific isotope Determine average atomic mass of an element based on the percent abundance of the isotopes in nature Predict the number of protons, neutrons, & electrons in the most abundant isotopes of an element | Lesson 13 Subatomic Heavyweights | L13 Subatomic Heavyweights | DO ex. p. 66 (#5-6 & 9) For a "4" DO (#7 and 8) | | A: 10/28 (W) | What types of isotopes do the various elements have? Interpret a graph of naturally occurring isotopes Describe the general nuclear composition of a stable nucleus Differentiate between a stable isotope and a radioactive isotope | Quiz Isotopes (start of class) Lesson 14: Isotopia | L14 Isotopia | Read pp67-70 DO Ex. p. 70 (#1-3) and p. 71 (#4, 6, 7, 11, 13, 14) | Continued on reverse side. | A: 10/30 (F) | What are nuclear reactions? Explain the different processes involved in nuclear changes and the conditions required for those processes Explain the connection between nuclear changes and changes in atomic identity | Lesson 15 Nuclear Quest | L15 Nuclear Quest | Read p. 73-77 DO ex. p. 77 (#1-6) and p. 78 (#7, 8, 11) | |---------------|---|--|--|---| | A: 11/3 (T) | How can radioactivity be detected in a cloud chamber? Explain how the cloud chamber works Explain why trails are produced by particles | Lab: Cloud ChambersCloud Chambers Summary | Lab HandoutCloud Chambers Lab
Summary | Review notes to begin
preparing for the test Cloud Chambers Lab Summary
(if not finished in class today) | | A: 11/5 (Th) | How are elements formed? Explain how different elements are formed through nuclear reactions Write a balanced nuclear equation Describe and explain a chain reaction | Lesson 16 Old Gold (maybe) | L16 Old Gold | Read p. 79-83 DO ex. p. 83 (#1-6) | | A: 11/9 (M) | Review Day | Assemble Packet Unit 2Begin Review Guide Unit 2 | Unit 2 Packet OrganizerUnit 2 Study Guide | Study for the test | | A: 11/12 (Th) | Unit 2 Exam | Q&A and Collect PacketsTake the exam | • | No new homework | ## **Unit 2 Learning Targets: Atoms & Nuclear Chemistry (LBC Lessons 11-16):** - ☐ 2.a Atoms [ALT 2 AST 2.1] - o Distinguish between the following atomic models: Democritus, Dalton, Thomson, and Rutherford. [Lesson 11] - Distinguish between electrons, protons, and neutrons; and relate particles to an element's atomic and mass numbers [Lesson 12] - 2.b Isotopes [ALT 2 AST 2.4] - Compare and contrast isotopes of a given element [Lesson 13] - Solve for an element's atomic weight given isotopic masses and naturally occurring percent abundances [Lesson 13] - Predict the number of protons, neutrons, and electrons in the most abundant isotope of an atom, when given average atomic mass. [Lesson 13] - 2.c Radioactivity [ALT 2 AST 2.5] - Define stable and unstable isotopes [Lesson 14] - o Interpret a graph of naturally occurring isotopes and describe the band of stability - o Describe the general nuclear composition of a stable nucleus - o Distinguish between a stable isotope and a radioactive isotope - Distinguish between alpha, beta, and gamma decay. [Lesson 15] - o Identify the symbol for alpha, beta, and gamma particles - Define half-life and use it in calculations - Nuclear Transmutations [Lesson 16] - o Explain how different elements are formed through nuclear reactions - Write a balanced nuclear equation for alpha, beta, and gamma decay - o Describe the mechanism for a nuclear chain reaction - Distinguish between fission and fusion