Chemistry 1	Name:
Jigsaw Reading: The Science of Slime	Period Date
	new substances with new properties are formed. properties observed at the macroscopic level?
Part 1: In your expert group, everyone will r question(s). Discuss how to present this infor questions. YOU MAY NOT pass around you	-
Read Sections 1 and 2 [Expert Group 1]: 1. What is slime?	
2. List a few characteristics of slime mention	oned in the introduction.
Read Sections 3 and 4 [Expert Group 2]: 3. What does the term 'viscosity' mean?	
Read Section 5 [Expert Group 3]: 4. What is a non-Newtonian fluid? Cite 1 or	r 2 examples from the article.
5. What is a shear stress? List the four example 1.	nples of shear stress.
Read Section 6 and Section 8 Diagram [Ex 6. What is shear thinning?	xpert Group 4]:
Read Section 7 and Section 8 Diagram [Ex 7. What is shear thickening?	xpert Group 5]:

Read Sections 9 and 10 [Expert Group 6]
8. We will be making the variety of slime made from glue and borax. How is cross-linking related to this type of slime?

Lab Procedure: Let's Make Slime

Materials:

1. 0 g Borax (Na₂B₄O₇) Food coloring (optional) 50 mL Elmer's Glue

Procedure:

1. Work with a partner. Put on your goggles.

2. Divide the labor:_____ will handle the Borax and _____ will handle the glue.

Borax Partner	Glue Partner
1. Go to the Borax station and weigh	1. Go to the glue station and pick up one pre-
approximately 1.0 gram of Borax into a	measured cup containing 50 mL of white
your beaker.	glue and a plastic spoon.
2. Fill the beaker to the 25.0 mL mark with	2. Dilute your glue 50:50 with water (add 50
water.	mL using graduated cylinder).
3. Return to your lab bench and stir with a	3. Return to your lab bench and stir with
spoon to dissolve the Borax.	your spoon to mix the glue and water.
4. List each reactant in your data table on the backside of your handout. Describe each in	

- 4. List each reactant in your data table on the backside of your handout. Describe each in detail. What is the color? Consistency? Is there an odor?
- 5. There are four food color choices this year. Decide if you want to color your slime. When I call out the color you want, you will bring the Glue-Water cup to me. Stir until you get a uniform color.

Be careful not to add too much of the Borax or your slime will be too stiff!!!

- 6. The Borax Partner will now slowly pour the saturated Borax solution into the glue cup while the Glue Partner keeps stirring with a spoon. As the two solutions mix a big glob of slime will form.
- 7. Quit adding the borax solution when there is still a little glue-water mixture left in the bottom of the cup.
- 8. Remove your slime from the cup and work with it until it is no longer sticky. Save it.

You will Now Clean-up Your mess before investigating your slime's properties

- 9. **Borax Partner** Dump the leftover borax solution down the sink and rinse out the plastic cup. Put the cup and spoon into the dishpan in the sink by the vent hood.
- 10.**Glue Partner:** Dispose of the glue cup and spoon in the trash. Wipe down your lab bench.
- 11. Divide your slime into two equal portions. Investigate your slime and record all observations of its behavior in the Investigation portion of the handout.
- 12. Write your reflection and turn in your lab paper to the red basket. Play with your slime until the bell rings. Store it in a Ziploc bag.

Observations: List each reactant and describe its physical properties in detail. After you make slime you will record its physical properties under the Products portion.		
Reactants:	Products:	
Investigation: Apply a shear stress to your slime sample. Describe how your slime sample acted when you applied a shear stress. How did it act when the shear was removed?		

Calculations and Analysis

1. Identify the solute and the solvent in the borax solution.

4. Calculate the approximate molarity of your borax solution. Convert mL of water to L. ____mL = ____L

2. Calculate the molar mass of borax (Na₂B₄O₇)? Show your work.

3. How many moles of borax did you use to make your solution? Show your work.