Chemistry 1		Name: Date		
ALT 4 LT4a. Extra Practice		Period	Date	
ALT 4: I can predict products of a c problems.	hemical reaction and use chemical e	equations to s	solve real world	
Purpose To review and practice writing, inter	preting, and balancing chemical equ	uations.		
Directions In each blank write the w	yord or phrase that best completes th	ne following	passage.	
Word Bank: chemical equation chemical reaction coefficients	energy or heat law of conservation of mass precipitate	produc reactar temper	nt	
When a piece of magnesium metal is	s added to dilute hydrochloric acid,	fizzing occur	s and hydrogen gas is	
released from the mixture. The fizzing	ng is evidence that a(n) (1)		has occurred	
between magnesium and hydrochlor	ic acid. The name given to either ma	agnesium or	hydrochloric acid in this	
case is (2), and the	hydrogen gas that is released is calle	ed a(n) (3) _	of the	
reaction. Some other signs that chem	nical reactions have occurred might	be change of	color or	
(4), or formation of	a solid(5)	If	a thermometer is placed	
into a mixture undergoing a reaction				
that (6)	_ was being released or absorbed. T	The shorthand	form by which a	
reaction is represented is called a(n)	(7)	In using	this method of	
representation, you must satisfy the	(8)		, a principle that	
states that matter is neither created n	or destroyed. In order to satisfy this	principle, yo	ou normally select the	
proper numerical (9)	to indicate the number of	units or mole	ecules of each substance	
taking part in the chemical change.				
Directions In the space provided, exequation.	express in words each of the numbere $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2$		mbols in the following	
10. Mg	15. (aa)			
11. (s)				
12. +				
13. 2 18. H ₂				
14. HCl (aq)	19. (g)			

Study Guide, Chapter 6

Chemistry: Concepts and Applications

/rite a word equation and a balanced chemical equation for each of the eactions described below.

Q luminum metal burns in pure oxygen gas to produce solid aluminum oxide.

chemical equation:

1. When solid mercury(II) oxide is heated, it breaks down to form liquid mercury and oxygen gas.

word equation:

chemical equation:

2. The addition of a solution of ammonium sulfate to a solution of lead(II) nitrate results in the formation of ammonium nitrate, which remains in solution, and lead(II) sulfate, which settles out of solution as a solid.

word equation:

chemical equation:

23. Copper metal and iron(II) nitrate in solution are formed when iron metal is added to a solution of copper (II) nitrate.

chemical equation:

24. Hydrogen sulfide gas reacts with pure oxygen gas to form water vapor and solid particles of sulfur.

word equation:

chemical equation:

Balance each of the following chemical equations.

25.
$$P(s) + O_2(g) \rightarrow P_4O_{10}(s)$$

26. ____Fe(OH)₃(s)
$$\rightarrow$$
 ____Fe₂O₃(s) + ____H₂O(g)

27. _____ Na₂CO₃(aq) + ____ Ca(OH)₂(aq)
$$\rightarrow$$
 ____ NaOH(aq) + ____ CaCO₃(s)

28. ____K_3PO_4(aq) + ____MgCl_2(aq)
$$\rightarrow$$
 ____ Mg_3(PO_4)2(s) + ____KCl(aq)

29. ___ Mg(HCO₃)₂(aq). + ___ HCl(aq)
$$\rightarrow$$
 ___ MgCl₂(aq) + ___ H₂O(l). + ___ CO₂(g)

31. ___Cu(s) + ___H₂SO₄(aq)
$$\rightarrow$$
 ___ CuSO₄(aq) + ___H₂O(l) + ___SO₂(g)

Date

6.1 Chemical Equations

Use with text pages 190 - 201

In each blank, write the word or phrase that best completes the following passage.

When a piece of magnesium metal is added to dilute hydrochloric acid, fizzing occurs and hydrogen gas is released from the mixture. The fizzing is evidence that a(n) (1) Chemical reaction has occurred between magnesium and hydrochloric acid. The name given to either magnesium or hydrochloric acid in this case is (2) reactant, and the hydrogen gas that is released is called a(n) product of the reaction. Some other indications that reactions have occurred might be change of color or (4) _______, or formation undergoing a reaction, you might observe that the temperature has gone up or down, indicating that (6) _______ on heat was being released or absorbed. The shorthand form by which a reaction is represented is called a(n) (7) Chemico equation. In using this method of representation, you must satisfy the (8) low of conservation of matter. neither created nor destroyed. In order to satisfy this principle, you normally select each substance taking part in the chemical change.

In the space provided, express in words each of the numbered terms or symbols in the following chemical equation.

 $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

	Mg Magnesium	15. (aq) dissolved in water
	(s) Aoliel	16. → Chemical reaction
12.	+ obding reactants	17. MgCl2(aq) magresiam chloride
	2 two the molecules	17. MgCl ₂ (aq) magnesiam chloride 18. H ₂ hydrogen water
14.	·HCl(aq) hydrochloric acid	19. (g) gas
	dissolved in water	

Write react	a word equation and a balanced chemical equation for each of the ions described below.
20.	luminum metal burns in pure oxygen gas to produce solid aluminum oxide.
7-18V	vord equation: "Aluminum + offgen > Aluminum ofride
	hemical equation: $A(s) + O_2(s) \rightarrow A(2O_3(s))$
3	When solid mercury(II) oxide is heated, it breaks down to form liquid mercury and oxygen gas. word equation: Marcury (I) oxide A Mercury + oxygen chemical equation: 2Hg O (5) A> 2Hg (2) + O2 (9)
22.	The addition of a solution of ammonium sulfate to a solution of lead(II) nitrate results in the formation of ammonium nitrate, which remains in solution, and lead(II) sulfate, which settles out of solution as a solid.
,	word equation: _ammonium Bulfate + lead (II) nitrate -> ammonium nitrate + lead (II) subfato
	chemical equation: $(N+4)SO_4 + Pb(NO_3)_2 \rightarrow PbSO_4 + PbSO_4 +$
,	Copper metal and iron(II) nitrate in solution are formed when iron metal is added to a solution of copper (II) nitrate. word equation: Trun + Copper (II) Multiple > Copper + Won(I
	chemical equation: Feist + Cu(NO3) 2 (ag) > Cu/s) + Fe(NO3) 2
24.	Hydrogen sulfide gas reacts with pure oxygen gas to form water vapor and solid particles of sulfur.
	word equation: Hydrogen sulfide + orgge > valu +:
2	chemical equation: $H_25_{(5)} + O_2_{(6)} \rightarrow H_2O + S_{(5)}$
Bala	ance each of the following chemical equations.
25.	$P(s) + 5 O_2(g) \rightarrow P_4O_{10}(s)$

25.
$$P(s) + 5 O_2(g) \rightarrow P_4O_{10}(s)$$

26.
$$2 \text{ Fe(OH)}_3(s) \rightarrow 1 \text{ Fe}_2O_3(s) + 3 \text{ H}_2O(g)$$

27. Na₂CO₃(aq) + Ca(OH)₂(aq)
$$\rightarrow$$
 NaOH(aq) + CaCO₃(s)

28.
$$2 \text{ K}_3\text{PO}_4(\text{aq}) + 3 \text{ MgCl}_2(\text{aq}) \rightarrow 4 \text{ Mg}_3(\text{PO}_4)_2(\text{s}) + 6 \text{ KCl}(\text{aq})$$

29.
$$\underline{\hspace{0.1cm}}$$
 Mg(HCO₃)₂(aq) + $\underline{\hspace{0.1cm}}$ HCl(aq) \rightarrow $\underline{\hspace{0.1cm}}$ MgCl₂(aq) + $\underline{\hspace{0.1cm}}$ H₂O(l) + $\underline{\hspace{0.1cm}}$ CO₂(g)

$$\frac{2}{2} \operatorname{Bi(NO_3)_3(aq)} + \frac{3}{2} \operatorname{CaI_2(aq)} \rightarrow \frac{2}{2} \operatorname{BiI_3(s)} + \frac{3}{2} \operatorname{Ca(NO_3)_2(aq)}$$

31.
$$\perp Cu(s) + 2 H_2SO_4(aq) \rightarrow \perp CuSO_4(aq) + 2 H_2O(1) + \perp SO_2(g)$$